Vitali convergence theorem

In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in Lp in terms of convergence in measure and a condition related to uniform integrability.

Preliminary definitions

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be a measure space, i.e. μ : A [ 0 , ] {\displaystyle \mu :{\mathcal {A}}\to [0,\infty ]} is a set function such that μ ( ) = 0 {\displaystyle \mu (\emptyset )=0} and μ {\displaystyle \mu } is countably-additive. All functions considered in the sequel will be functions f : X K {\displaystyle f:X\to \mathbb {K} } , where K = R {\displaystyle \mathbb {K} =\mathbb {R} } or C {\displaystyle \mathbb {C} } . We adopt the following definitions according to Bogachev's terminology.[1]

  • A set of functions F L 1 ( X , A , μ ) {\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is called uniformly integrable if lim M + sup f F { | f | > M } | f | d μ = 0 {\displaystyle \lim _{M\to +\infty }\sup _{f\in {\mathcal {F}}}\int _{\{|f|>M\}}|f|\,d\mu =0} , i.e   ε > 0 ,     M ε > 0 : sup f F { | f | M ε } | f | d μ < ε {\displaystyle \forall \ \varepsilon >0,\ \exists \ M_{\varepsilon }>0:\sup _{f\in {\mathcal {F}}}\int _{\{|f|\geq M_{\varepsilon }\}}|f|\,d\mu <\varepsilon } .
  • A set of functions F L 1 ( X , A , μ ) {\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is said to have uniformly absolutely continuous integrals if lim μ ( A ) 0 sup f F A | f | d μ = 0 {\displaystyle \lim _{\mu (A)\to 0}\sup _{f\in {\mathcal {F}}}\int _{A}|f|\,d\mu =0} , i.e.   ε > 0 ,     δ ε > 0 ,     A A : μ ( A ) < δ ε sup f F A | f | d μ < ε {\displaystyle \forall \ \varepsilon >0,\ \exists \ \delta _{\varepsilon }>0,\ \forall \ A\in {\mathcal {A}}:\mu (A)<\delta _{\varepsilon }\Rightarrow \sup _{f\in {\mathcal {F}}}\int _{A}|f|\,d\mu <\varepsilon } . This definition is sometimes used as a definition of uniform integrability. However, it differs from the definition of uniform integrability given above.


When μ ( X ) < {\displaystyle \mu (X)<\infty } , a set of functions F L 1 ( X , A , μ ) {\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is uniformly integrable if and only if it is bounded in L 1 ( X , A , μ ) {\displaystyle L^{1}(X,{\mathcal {A}},\mu )} and has uniformly absolutely continuous integrals. If, in addition, μ {\displaystyle \mu } is atomless, then the uniform integrability is equivalent to the uniform absolute continuity of integrals.

Finite measure case

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be a measure space with μ ( X ) < {\displaystyle \mu (X)<\infty } . Let ( f n ) L p ( X , A , μ ) {\displaystyle (f_{n})\subset L^{p}(X,{\mathcal {A}},\mu )} and f {\displaystyle f} be an A {\displaystyle {\mathcal {A}}} -measurable function. Then, the following are equivalent :

  1. f L p ( X , A , μ ) {\displaystyle f\in L^{p}(X,{\mathcal {A}},\mu )} and ( f n ) {\displaystyle (f_{n})} converges to f {\displaystyle f} in L p ( X , A , μ ) {\displaystyle L^{p}(X,{\mathcal {A}},\mu )}  ;
  2. The sequence of functions ( f n ) {\displaystyle (f_{n})} converges in μ {\displaystyle \mu } -measure to f {\displaystyle f} and ( | f n | p ) n 1 {\displaystyle (|f_{n}|^{p})_{n\geq 1}} is uniformly integrable ;


For a proof, see Bogachev's monograph "Measure Theory, Volume I".[1]

Infinite measure case

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be a measure space and 1 p < {\displaystyle 1\leq p<\infty } . Let ( f n ) n 1 L p ( X , A , μ ) {\displaystyle (f_{n})_{n\geq 1}\subseteq L^{p}(X,{\mathcal {A}},\mu )} and f L p ( X , A , μ ) {\displaystyle f\in L^{p}(X,{\mathcal {A}},\mu )} . Then, ( f n ) {\displaystyle (f_{n})} converges to f {\displaystyle f} in L p ( X , A , μ ) {\displaystyle L^{p}(X,{\mathcal {A}},\mu )} if and only if the following holds :

  1. The sequence of functions ( f n ) {\displaystyle (f_{n})} converges in μ {\displaystyle \mu } -measure to f {\displaystyle f}  ;
  2. ( f n ) {\displaystyle (f_{n})} has uniformly absolutely continuous integrals;
  3. For every ε > 0 {\displaystyle \varepsilon >0} , there exists X ε A {\displaystyle X_{\varepsilon }\in {\mathcal {A}}} such that μ ( X ε ) < {\displaystyle \mu (X_{\varepsilon })<\infty } and sup n 1 X X ε | f n | p d μ < ε . {\displaystyle \sup _{n\geq 1}\int _{X\setminus X_{\varepsilon }}|f_{n}|^{p}\,d\mu <\varepsilon .}

When μ ( X ) < {\displaystyle \mu (X)<\infty } , the third condition becomes superfluous (one can simply take X ε = X {\displaystyle X_{\varepsilon }=X} ) and the first two conditions give the usual form of Lebesgue-Vitali's convergence theorem originally stated for measure spaces with finite measure. In this case, one can show that conditions 1 and 2 imply that the sequence ( | f n | p ) n 1 {\displaystyle (|f_{n}|^{p})_{n\geq 1}} is uniformly integrable.

Converse of the theorem

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be measure space. Let ( f n ) n 1 L 1 ( X , A , μ ) {\displaystyle (f_{n})_{n\geq 1}\subseteq L^{1}(X,{\mathcal {A}},\mu )} and assume that lim n A f n d μ {\displaystyle \lim _{n\to \infty }\int _{A}f_{n}\,d\mu } exists for every A A {\displaystyle A\in {\mathcal {A}}} . Then, the sequence ( f n ) {\displaystyle (f_{n})} is bounded in L 1 ( X , A , μ ) {\displaystyle L^{1}(X,{\mathcal {A}},\mu )} and has uniformly absolutely continuous integrals. In addition, there exists f L 1 ( X , A , μ ) {\displaystyle f\in L^{1}(X,{\mathcal {A}},\mu )} such that lim n A f n d μ = A f d μ {\displaystyle \lim _{n\to \infty }\int _{A}f_{n}\,d\mu =\int _{A}f\,d\mu } for every A A {\displaystyle A\in {\mathcal {A}}} .

When μ ( X ) < {\displaystyle \mu (X)<\infty } , this implies that ( f n ) {\displaystyle (f_{n})} is uniformly integrable.

For a proof, see Bogachev's monograph "Measure Theory, Volume I".[1]

Citations

  1. ^ a b c Bogachev, Vladimir I. (2007). Measure Theory Volume I. New York: Springer. pp. 267–271. ISBN 978-3-540-34513-8.
  • v
  • t
  • e
Measure theory
Basic concepts
  • Absolute continuity of measures
  • Lebesgue integration
  • Lp spaces
  • Measure
  • Measure space
    • Probability space
  • Measurable space/function
SetsTypes of MeasuresParticular measuresMapsMain resultsOther results
For Lebesgue measure
Applications & related