Counting measure

Mathematical concept

In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity {\displaystyle \infty } if the subset is infinite.[1]

The counting measure can be defined on any measurable space (that is, any set X {\displaystyle X} along with a sigma-algebra) but is mostly used on countable sets.[1]

In formal notation, we can turn any set X {\displaystyle X} into a measurable space by taking the power set of X {\displaystyle X} as the sigma-algebra Σ ; {\displaystyle \Sigma ;} that is, all subsets of X {\displaystyle X} are measurable sets. Then the counting measure μ {\displaystyle \mu } on this measurable space ( X , Σ ) {\displaystyle (X,\Sigma )} is the positive measure Σ [ 0 , + ] {\displaystyle \Sigma \to [0,+\infty ]} defined by

μ ( A ) = { | A | if  A  is finite + if  A  is infinite {\displaystyle \mu (A)={\begin{cases}\vert A\vert &{\text{if }}A{\text{ is finite}}\\+\infty &{\text{if }}A{\text{ is infinite}}\end{cases}}}
for all A Σ , {\displaystyle A\in \Sigma ,} where | A | {\displaystyle \vert A\vert } denotes the cardinality of the set A . {\displaystyle A.} [2]

The counting measure on ( X , Σ ) {\displaystyle (X,\Sigma )} is σ-finite if and only if the space X {\displaystyle X} is countable.[3]

Integration on N {\displaystyle \mathbb {N} } with counting measure

Take the measure space ( N , 2 N , μ ) {\displaystyle (\mathbb {N} ,2^{\mathbb {N} },\mu )} , where 2 N {\displaystyle 2^{\mathbb {N} }} is the set of all subsets of the naturals and μ {\displaystyle \mu } the counting measure. Take any measurable f : N [ 0 , ] {\displaystyle f:\mathbb {N} \to [0,\infty ]} . As it is defined on N {\displaystyle \mathbb {N} } , f {\displaystyle f} can be represented pointwise as

f ( x ) = n = 1 f ( n ) 1 { n } ( x ) = lim M   n = 1 M f ( n ) 1 { n } ( x )   ϕ M ( x ) = lim M ϕ M ( x ) {\displaystyle f(x)=\sum _{n=1}^{\infty }f(n)1_{\{n\}}(x)=\lim _{M\to \infty }\underbrace {\ \sum _{n=1}^{M}f(n)1_{\{n\}}(x)\ } _{\phi _{M}(x)}=\lim _{M\to \infty }\phi _{M}(x)}

Each ϕ M {\displaystyle \phi _{M}} is measurable. Moreover ϕ M + 1 ( x ) = ϕ M ( x ) + f ( M + 1 ) 1 { M + 1 } ( x ) ϕ M ( x ) {\displaystyle \phi _{M+1}(x)=\phi _{M}(x)+f(M+1)\cdot 1_{\{M+1\}}(x)\geq \phi _{M}(x)} . Still further, as each ϕ M {\displaystyle \phi _{M}} is a simple function

N ϕ M d μ = N ( n = 1 M f ( n ) 1 { n } ( x ) ) d μ = n = 1 M f ( n ) μ ( { n } ) = n = 1 M f ( n ) 1 = n = 1 M f ( n ) {\displaystyle \int _{\mathbb {N} }\phi _{M}d\mu =\int _{\mathbb {N} }\left(\sum _{n=1}^{M}f(n)1_{\{n\}}(x)\right)d\mu =\sum _{n=1}^{M}f(n)\mu (\{n\})=\sum _{n=1}^{M}f(n)\cdot 1=\sum _{n=1}^{M}f(n)}
Hence by the monotone convergence theorem
N f d μ = lim M N ϕ M d μ = lim M n = 1 M f ( n ) = n = 1 f ( n ) {\displaystyle \int _{\mathbb {N} }fd\mu =\lim _{M\to \infty }\int _{\mathbb {N} }\phi _{M}d\mu =\lim _{M\to \infty }\sum _{n=1}^{M}f(n)=\sum _{n=1}^{\infty }f(n)}

Discussion

The counting measure is a special case of a more general construction. With the notation as above, any function f : X [ 0 , ) {\displaystyle f:X\to [0,\infty )} defines a measure μ {\displaystyle \mu } on ( X , Σ ) {\displaystyle (X,\Sigma )} via

μ ( A ) := a A f ( a )  for all  A X , {\displaystyle \mu (A):=\sum _{a\in A}f(a)\quad {\text{ for all }}A\subseteq X,}
where the possibly uncountable sum of real numbers is defined to be the supremum of the sums over all finite subsets, that is,
y Y   R y   :=   sup F Y , | F | < { y F y } . {\displaystyle \sum _{y\,\in \,Y\!\ \subseteq \,\mathbb {R} }y\ :=\ \sup _{F\subseteq Y,\,|F|<\infty }\left\{\sum _{y\in F}y\right\}.}
Taking f ( x ) = 1 {\displaystyle f(x)=1} for all x X {\displaystyle x\in X} gives the counting measure.

See also

  • Pip (counting) – Easily countable items
  • Set function – Function from sets to numbers

References

  1. ^ a b Counting Measure at PlanetMath.
  2. ^ Schilling, René L. (2005). Measures, Integral and Martingales. Cambridge University Press. p. 27. ISBN 0-521-61525-9.
  3. ^ Hansen, Ernst (2009). Measure Theory (Fourth ed.). Department of Mathematical Science, University of Copenhagen. p. 47. ISBN 978-87-91927-44-7.
  • v
  • t
  • e
Measure theory
Basic concepts
  • Absolute continuity of measures
  • Lebesgue integration
  • Lp spaces
  • Measure
  • Measure space
    • Probability space
  • Measurable space/function
SetsTypes of MeasuresParticular measuresMapsMain resultsOther results
For Lebesgue measure
Applications & related