重力の特異点

一般相対性理論
G μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\tfrac {8\pi G}{c^{4}}}T_{\mu \nu }}
アインシュタイン方程式
入門
数学的定式化
関連書籍
基本概念
特殊相対性理論
等価原理
世界線 · リーマン幾何学
現象
ケプラー問題(英語版) · レンズ · 重力波
慣性系の引きずり · 測地効果(英語版)
事象の地平面 · 特異点
ブラックホール
方程式
線形化重力(英語版)
PPN形式
アインシュタイン方程式
フリードマン方程式
ADM形式(英語版)
BSSN形式(英語版)
高度な理論
カルツァ=クライン理論
量子重力理論
(英語版)
シュヴァルツシルト
ライスナー・ノルドシュトロム · ゲーデル
カー · カー・ニューマン
カスナー(英語版) · Taub-NUT(英語版) · ミルン・モデル(英語版)
ロバートソン・ウォーカー · pp波(英語版)
科学者
アインシュタイン · ミンコフスキー · エディントン
ルメートル · シュヴァルツシルト
ロバートソン · カー · フリードマン
チャンドラセカール · ホーキング
天文学上の未解決問題
量子効果やねじれその他の現象により、ブラックホール内部で一般相対性理論が破綻するか。

重力の特異点(じゅうりょくのとくいてん、gravitational singularity)は、概略的には「重力場が無限大となるような場所」のことである。

重力場の量には曲率や物質の密度の量について含んでいる。時空の特異点で重要なのは曲率特異点と円錐特異点である。また、特異点事象の地平面に含まれているかどうかで分類することが出来る。

一般相対性理論の解または他の重力理論(超重力と呼ばれることもある)はしばしば計量が無限大に発散するような点を結果として与えることがある。しかし、それらの多くの点は実は完全に正則である。さらに言えば、その無限はその点に対して不適切な座標系を用いた結果にすぎない。よってその点が特異点であるかどうか確認する必要がある。 例として、回転していないブラックホールを表すシュヴァルツシルトの解を挙げる。ブラックホールから十分に離れた系の座標系で、事象の地平線での計量は無限大となってしまう。しかしながら、事象の地平線上の時空は正則である。正則性は他の座標系(クルスカル座標系 (Kruskal-Szekeres coordinates) ) ではその点の計量が滑らかであることから分かる。一方で、ブラックホールの中心は、同じように計量は無限大となる、解は特異性が存在することを示している。

回転していないブラックホールの特異点は一点に発生する。それは点の特異点と呼ばれる。回転しているブラックホールのカー解では、特異点はリング状に発生する。

参考文献

  • 小玉英雄『相対性理論』培風館〈物理学基礎シリーズ〉。ISBN 978-4-563-02386-7。 

関連項目

  • 裸の特異点
  • BKL特異点(英語版) - 重力特異点の周囲でカオス振動をする特異点
  • ベリンスキーカラトニコフリフシッツ特異点
  • アウトフライング特異点
特殊
相対論
背景
基礎
公式
結果
  • 時間の遅れ
  • 相対論的質量(英語版)
  • E = mc2
  • 長さの収縮
  • 同時性の相対性(英語版)
  • 相対論的ドップラー効果(英語版)
  • トーマス歳差(英語版)
  • 相対論的ディスク(英語版)
時空
一般
相対論
背景
基礎
現象
方程式
発展
理論
(英語版)
科学者
カテゴリ カテゴリ
種類
大きさ
形成
特徴
モデル
問題
計量
関連項目