Q-Gaussian process

q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations. For other deformations of Gaussian distributions, see q-Gaussian distribution and Gaussian q-distribution.

History

The q-Gaussian process was formally introduced in a paper by Frisch and Bourret[1] under the name of parastochastics, and also later by Greenberg[2] as an example of infinite statistics. It was mathematically established and investigated in papers by Bozejko and Speicher[3] and by Bozejko, Kümmerer, and Speicher[4] in the context of non-commutative probability.

It is given as the distribution of sums of creation and annihilation operators in a q-deformed Fock space. The calculation of moments of those operators is given by a q-deformed version of a Wick formula or Isserlis formula. The specification of a special covariance in the underlying Hilbert space leads to the q-Brownian motion,[4] a special non-commutative version of classical Brownian motion.

q-Fock space

In the following q [ 1 , 1 ] {\displaystyle q\in [-1,1]} is fixed. Consider a Hilbert space H {\displaystyle {\mathcal {H}}} . On the algebraic full Fock space

F alg ( H ) = n 0 H n , {\displaystyle {\mathcal {F}}_{\text{alg}}({\mathcal {H}})=\bigoplus _{n\geq 0}{\mathcal {H}}^{\otimes n},}

where H 0 = C Ω {\displaystyle {\mathcal {H}}^{0}=\mathbb {C} \Omega } with a norm one vector Ω {\displaystyle \Omega } , called vacuum, we define a q-deformed inner product as follows:

h 1 h n , g 1 g m q = δ n m σ S n r = 1 n h r , g σ ( r ) q i ( σ ) , {\displaystyle \langle h_{1}\otimes \cdots \otimes h_{n},g_{1}\otimes \cdots \otimes g_{m}\rangle _{q}=\delta _{nm}\sum _{\sigma \in S_{n}}\prod _{r=1}^{n}\langle h_{r},g_{\sigma (r)}\rangle q^{i(\sigma )},}

where i ( σ ) = # { ( k , ) 1 k < n ; σ ( k ) > σ ( ) } {\displaystyle i(\sigma )=\#\{(k,\ell )\mid 1\leq k<\ell \leq n;\sigma (k)>\sigma (\ell )\}} is the number of inversions of σ S n {\displaystyle \sigma \in S_{n}} .

The q-Fock space[5] is then defined as the completion of the algebraic full Fock space with respect to this inner product

F q ( H ) = n 0 H n ¯ , q . {\displaystyle {\mathcal {F}}_{q}({\mathcal {H}})={\overline {\bigoplus _{n\geq 0}{\mathcal {H}}^{\otimes n}}}^{\langle \cdot ,\cdot \rangle _{q}}.}

For 1 < q < 1 {\displaystyle -1<q<1} the q-inner product is strictly positive.[3][6] For q = 1 {\displaystyle q=1} and q = 1 {\displaystyle q=-1} it is positive, but has a kernel, which leads in these cases to the symmetric and anti-symmetric Fock spaces, respectively.

For h H {\displaystyle h\in {\mathcal {H}}} we define the q-creation operator a ( h ) {\displaystyle a^{*}(h)} , given by

a ( h ) Ω = h , a ( h ) h 1 h n = h h 1 h n . {\displaystyle a^{*}(h)\Omega =h,\qquad a^{*}(h)h_{1}\otimes \cdots \otimes h_{n}=h\otimes h_{1}\otimes \cdots \otimes h_{n}.}

Its adjoint (with respect to the q-inner product), the q-annihilation operator a ( h ) {\displaystyle a(h)} , is given by

a ( h ) Ω = 0 , a ( h ) h 1 h n = r = 1 n q r 1 h , h r h 1 h r 1 h r + 1 h n . {\displaystyle a(h)\Omega =0,\qquad a(h)h_{1}\otimes \cdots \otimes h_{n}=\sum _{r=1}^{n}q^{r-1}\langle h,h_{r}\rangle h_{1}\otimes \cdots \otimes h_{r-1}\otimes h_{r+1}\otimes \cdots \otimes h_{n}.}

q-commutation relations

Those operators satisfy the q-commutation relations[7]

a ( f ) a ( g ) q a ( g ) a ( f ) = f , g 1 ( f , g H ) . {\displaystyle a(f)a^{*}(g)-qa^{*}(g)a(f)=\langle f,g\rangle \cdot 1\qquad (f,g\in {\mathcal {H}}).}

For q = 1 {\displaystyle q=1} , q = 0 {\displaystyle q=0} , and q = 1 {\displaystyle q=-1} this reduces to the CCR-relations, the Cuntz relations, and the CAR-relations, respectively. With the exception of the case q = 1 , {\displaystyle q=1,} the operators a ( f ) {\displaystyle a^{*}(f)} are bounded.

q-Gaussian elements and definition of multivariate q-Gaussian distribution (q-Gaussian process)

Operators of the form s q ( h ) = a ( h ) + a ( h ) {\displaystyle s_{q}(h)={a(h)+a^{*}(h)}} for h H {\displaystyle h\in {\mathcal {H}}} are called q-Gaussian[5] (or q-semicircular[8]) elements.

On F q ( H ) {\displaystyle {\mathcal {F}}_{q}({\mathcal {H}})} we consider the vacuum expectation state τ ( T ) = Ω , T Ω {\displaystyle \tau (T)=\langle \Omega ,T\Omega \rangle } , for T B ( F ( H ) ) {\displaystyle T\in {\mathcal {B}}({\mathcal {F}}({\mathcal {H}}))} .

The (multivariate) q-Gaussian distribution or q-Gaussian process[4][9] is defined as the non commutative distribution of a collection of q-Gaussians with respect to the vacuum expectation state. For h 1 , , h p H {\displaystyle h_{1},\dots ,h_{p}\in {\mathcal {H}}} the joint distribution of s q ( h 1 ) , , s q ( h p ) {\displaystyle s_{q}(h_{1}),\dots ,s_{q}(h_{p})} with respect to τ {\displaystyle \tau } can be described in the following way,:[1][3] for any i { 1 , , k } { 1 , , p } {\displaystyle i\{1,\dots ,k\}\rightarrow \{1,\dots ,p\}} we have

τ ( s q ( h i ( 1 ) ) s q ( h i ( k ) ) ) = π P 2 ( k ) q c r ( π ) ( r , s ) π h i ( r ) , h i ( s ) , {\displaystyle \tau \left(s_{q}(h_{i(1)})\cdots s_{q}(h_{i(k)})\right)=\sum _{\pi \in {\mathcal {P}}_{2}(k)}q^{cr(\pi )}\prod _{(r,s)\in \pi }\langle h_{i(r)},h_{i(s)}\rangle ,}

where c r ( π ) {\displaystyle cr(\pi )} denotes the number of crossings of the pair-partition π {\displaystyle \pi } . This is a q-deformed version of the Wick/Isserlis formula.

q-Gaussian distribution in the one-dimensional case

For p = 1, the q-Gaussian distribution is a probability measure on the interval [ 2 / 1 q , 2 / 1 q ] {\displaystyle [-2/{\sqrt {1-q}},2/{\sqrt {1-q}}]} , with analytic formulas for its density.[10] For the special cases q = 1 {\displaystyle q=1} , q = 0 {\displaystyle q=0} , and q = 1 {\displaystyle q=-1} , this reduces to the classical Gaussian distribution, the Wigner semicircle distribution, and the symmetric Bernoulli distribution on ± 1 {\displaystyle \pm 1} . The determination of the density follows from old results[11] on corresponding orthogonal polynomials.

Operator algebraic questions

The von Neumann algebra generated by s q ( h i ) {\displaystyle s_{q}(h_{i})} , for h i {\displaystyle h_{i}} running through an orthonormal system ( h i ) i I {\displaystyle (h_{i})_{i\in I}} of vectors in H {\displaystyle {\mathcal {H}}} , reduces for q = 0 {\displaystyle q=0} to the famous free group factors L ( F | I | ) {\displaystyle L(F_{\vert I\vert })} . Understanding the structure of those von Neumann algebras for general q has been a source of many investigations.[12] It is now known, by work of Guionnet and Shlyakhtenko,[13] that at least for finite I and for small values of q, the von Neumann algebra is isomorphic to the corresponding free group factor.

References

  1. ^ a b Frisch, U.; Bourret, R. (February 1970). "Parastochastics". Journal of Mathematical Physics. 11 (2): 364–390. Bibcode:1970JMP....11..364F. doi:10.1063/1.1665149.
  2. ^ Greenberg, O. W. (12 February 1990). "Example of infinite statistics". Physical Review Letters. 64 (7): 705–708. Bibcode:1990PhRvL..64..705G. doi:10.1103/PhysRevLett.64.705. PMID 10042057.
  3. ^ a b c Bożejko, Marek; Speicher, Roland (April 1991). "An example of a generalized Brownian motion". Communications in Mathematical Physics. 137 (3): 519–531. Bibcode:1991CMaPh.137..519B. doi:10.1007/BF02100275. S2CID 123190397.
  4. ^ a b c Bożejko, M.; Kümmerer, B.; Speicher, R. (1 April 1997). "q-Gaussian Processes: Non-commutative and Classical Aspects". Communications in Mathematical Physics. 185 (1): 129–154. arXiv:funct-an/9604010. Bibcode:1997CMaPh.185..129B. doi:10.1007/s002200050084. S2CID 2993071.
  5. ^ a b Effros, Edward G.; Popa, Mihai (22 July 2003). "Feynman diagrams and Wick products associated with q-Fock space". Proceedings of the National Academy of Sciences. 100 (15): 8629–8633. arXiv:math/0303045. Bibcode:2003PNAS..100.8629E. doi:10.1073/pnas.1531460100. PMC 166362. PMID 12857947.
  6. ^ Zagier, Don (June 1992). "Realizability of a model in infinite statistics". Communications in Mathematical Physics. 147 (1): 199–210. Bibcode:1992CMaPh.147..199Z. CiteSeerX 10.1.1.468.966. doi:10.1007/BF02099535. S2CID 53385666.
  7. ^ Kennedy, Matthew; Nica, Alexandru (9 September 2011). "Exactness of the Fock Space Representation of the q-Commutation Relations". Communications in Mathematical Physics. 308 (1): 115–132. arXiv:1009.0508. Bibcode:2011CMaPh.308..115K. doi:10.1007/s00220-011-1323-9. S2CID 119124507.
  8. ^ Vergès, Matthieu Josuat (20 November 2018). "Cumulants of the q-semicircular Law, Tutte Polynomials, and Heaps". Canadian Journal of Mathematics. 65 (4): 863–878. arXiv:1203.3157. doi:10.4153/CJM-2012-042-9. S2CID 2215028.
  9. ^ Bryc, Włodzimierz; Wang, Yizao (2016). "The local structure of q-Gaussian processes". Probability and Mathematical Statistics. 36 (2): 335–352. arXiv:1511.06667. MR 3593028.
  10. ^ Leeuwen, Hans van; Maassen, Hans (September 1995). "A q deformation of the Gauss distribution". Journal of Mathematical Physics. 36 (9): 4743–4756. Bibcode:1995JMP....36.4743V. doi:10.1063/1.530917. hdl:2066/141604.
  11. ^ Szegö, G (1926). "Ein Beitrag zur Theorie der Thetafunktionen" [A contribution to the theory of theta functions]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse (in German): 242–252.
  12. ^ Wasilewski, Mateusz (2021). "A simple proof of the complete metric approximation property for q-Gaussian algebras". Colloquium Mathematicum. 163 (1): 1–14. arXiv:1907.00730. doi:10.4064/cm7968-11-2019. MR 4162298.
  13. ^ Guionnet, A.; Shlyakhtenko, D. (13 November 2013). "Free monotone transport". Inventiones Mathematicae. 197 (3): 613–661. arXiv:1204.2182. doi:10.1007/s00222-013-0493-9. S2CID 16882208.